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The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RICIS} in 1986 to encourage the NASA

Johnson Space Center {JSC) and local industry to actively support research

in the computing and information sciences. As part of this endeavor. UHCL

proposed a partnership with JSC to Jointly definc and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsl-

blllties. JSC agreed and entered into a continuing cooperative agreement

with UHCL bcglnning in May 1986, to jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to

conduct the research.

The UHCL/RiCIS mission is to conduct, coordinate, and disseminate research

and professional level educaUon in computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCL and Its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to Its sponsors and researchers. Within UHCL, the mission is being

implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and HumaniUes, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

tional sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RICIS research ant education pmgrar_, while other research

organizations are involved via the *gateway" concepL

A major role of RICIS then Is to find the best match ofsponsors, researchers

and research objectives to advance knowledge in the computing and informa-

tion sciences. RICIS, working Jointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates

technical results into the goals of UHCL, NASA/JSC and industry.
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Abstract

Although computers have come a long way since their invention, they are

basically able to handle only crisp values at the hardware level. Unfortunately, the

world we llve in consists of problems which fail to fall into this category, i.e.

uncertainty is all too common. In this work, we look at a problem which involves

uncertainty. To be specific we deal with attributes which are fuzzy sets. Under this

condition we acquire knowledge by looking at examples. In each example a

condition as well as a decision is made available. Based on the examples given to us,

we will extract two sets of rules namely: certain and possible. Furthermore we will

construct measures of how much we believe these rules, and finally we will define

the decisions as a function of the terms used in the conditions.
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CHAPTER 1

INTRODUCTION

W

U

m

Despite the advancements made in computer technology to date, most

of the computers on the market today are stored program sequential processing

machines built around the Von Neumann architecture, the principles for which date

back to the Turing machine, a computing model first proposed by Alan Turing in

1936. This means that, in principle, modem day computers are designed primarily

to carry out mathematical calculations. Human expectations vis-a-vis computers

know no bounds. These expectations go beyond routine Jobs such as numerical

calculations and the processing of offlce work, to include support in decision-

making processes, the ability to understand natural languages, the diagnosis of

malfunctions and the processing of intellectual information such as that required in

design and planning work. To accomplish these kinds of operations, symbol

processing computers equipped with inference functions are required. However,

even symbol processing machines are not capable of handling experience and

intuition, two very important aspects of intelligence. This is because conventional

computers are extremely crisp, (i.e. capable of dealing with definite values) having

being designed around the binary logic of Boolean algebra. Human experience and

however, by their very nature are multi-numerical. In other words, theyintuition,

are .

This raises the question of Just how necessary it is to have computers

that are capable of processing ambiguous information, such as human experience

and intuition. After all can't most phenomena encountered in this world be

thoroughly processed mathematically?. This question has been raised because today's

computers are ordy used to solve well-structured problems for which all information
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is available. However, the everyday real world in which we live is rife with problems

for which not all information is available, and which are not well structured. This

project focuses on such a problem, for which all information is not available and/or

not well structured.

w

I. I The Problem at Hand

Expert systems of a certain kind rely essentially upon the availability of a

method for handling uncertainty. These systems cannot be conceived without a

decision being firstly made about the choice of this method. Obvlously this is true for

all expert systems using empirical knowledge which in itself is not absolutely certain.

As an example, we could mention a medical expert system which draws conclusions

from the observed symptoms about whether or not a certain disease is present. All

conclusions of this type inevitably contain an amount of uncertainty. However the

rules which lead to these conclusions should not be confused with classical logical

rules and must not be treated in the same way.

We shall call expert systems of this type diagnostic systems. They are

mostly in the field of medicine, but can also be used in many other applications such

as meteorology or geology, and of course for the control of technical installations.

Therefore the expression diagnostic system should always be understood in the

sense of an expert system, which relies upon empirical interdependencles for

drawing its conclusions and consequently requires the treatment of uncertainty,

In order to make it possible to decide upon an appropriate therapy, a

quantitative measure of uncertainty has to be applied in all relevant cases of a

diagnostic system. Moreover it may be sensible to establish rules which, in certain

stages of the investigation, direct the investigator's efforts depending on the degree

of certainty achieved for possible hypothesis.

2
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It is evident therefore, that for researchers who design diagnostic

systems the question has to answered, as to which method of measuring uncertainty

should be employed. For more than three hundred years scientists, philosophers,

mathematicians and statisticians have used the concept of probability to describe

degrees of uncertainty. Over three centuries a huge amount of theoretical results

and experiences concerning the applicability of probability theory in different fields

of human knowledge has been accumulated. Nevertheless many doubts concerning

the appropriateness of the use of probability in diagnostic systems have arisen during

the last decade. In the following sections we look at the probability theory and see

why this is so.

.I

W

V
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1.2 Reasoning and Probability Theory.

Decision making often involves the use of rules. Simple rules are

acceptable to most people in their everyday life, e.g,

In India, if you are under 60 years of age then you are entitled to a retirement

po s it ion.

A rule for entitlement might be more complex, but understandable, e.g.

If you are at least 60 years old and female and you have been resident in India

for at least 25 years, or if you are male and at least 65 years old and you have

been resident in India for at least 30 years then, provided you are not

receiving a disability pension, you are entitled to the retirement position.

People use 'if .... then .... ' statements in conversation, and often use rules in their

everyday lives. However, problems which require expertise are not deterministic,

i.e. the solutions cannot be stated in simple rules. Where Judgement is involved,

people often use words llke probably, unlikely, almost certainly, i.e. uncertainty is

involved. In some cases they quantify what they mean. For example:

I am 99% confident that if you water the plant, its condition will improve.
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There is a small risk, about 5%, that you have this disease.

The ways in which people use these perceri[ages are fll defined and often

inconsistent. However. as we shah see in subsequent sections, there are

mathematical theories which provide logical models for uncertainty.

V

r.

v

V

I

w

W

1.2.1 Probability Theory.

Probability theory originated in the seventeenth century in the context

of gambling. A gambler assesses his chance of winning and therefore the risk

associated with his bid [3]. This process is very slmflar to that of an expert weighing

up evidence, and judging whether he has sufficient evidence to justify a particular

course of action. Chance, expectation and risk are components of both probability

theory and expert judgements.

Probability is a measure of certainty between 0 and I. The extreme values

denote impossibility and certainty. Most people would understand that if a fair coin

is tossed then the probability of its landing on a certain side is 0.5. This is because

we ignore the possibility of its landing on its edge or not landing at all, and the

other two outcomes are equally likely. Furthermore, only one of the events (head or

taft) can occur at once, i.e. the events are mutually exclusive. This leads us to the

classical definition of probability:

If a random experiment has N possible outcomes which are all equally

likely and mutually exclusive, and n of these possibilities has

outcome A then the probability of outcome A is n/N.

For example, consider a standard pack of 52 playing cards which has been shuffled

so that the order of the cards is unpredictable. If a card is picked at random then

the chance that it is a club is 13/52 _=0.25_ This is a very simplistic view of

uncertainty. The definition depends on the terms random, mutually exclusive and

equally likely. It cannot help much with questions like:

4



What is the probability that a child born in the United Stales will be a male?

What is the probability that the pain is caused by indigestion, and not a

serious illness?

These are all real questions, and experts continually make similar judgements. If we

looked at the record of births in the United States over the past two years then we

could calculate the relative frequency of male births, i.e. the ratio of number of boys

to number of births. We would expect this to be close to the true probability.

Assuming that there had been no genetic changes, a more reliable estimate could be

obtained from the records of the past ten years. So, ff we can imagine a series of

observations under constant conditions then the probability p of event A can be

approximated by the relative frequency of A in a series of such observations. In

practice 'true' probabilities are almost impossible to quantify, and most probabilities

used are estimates based on relative frequencies.

1.3 Why not Classical Probability Theory?

Even though, the basic ideas prevailing in some considerations about

diagnostic systems sound convincing, they violate fundamental requirements for

reasonable handling of uncertainty. These ideas may be described as follows: If a

certain fact is observed, a measure M 1 of uncertainty concerning the hypothesis in

question must exist. If in addition another fact is observed, which produces a

measure M2 wlth respect to the same hypothesis, a combination rule must be given,

which yields the measure of uncertainty of this hypothesis resulting from both

observations. Such a rule, which calcula_tes the measure of uncertainty for the

combined observation as a function of the measures M 1 and M2 can never take into

account the klnd of mutual dependence of the two observed facts. It might well be

that these facts nearly always occur together, ff indeed they occur at all. In such a

situation the second observation is redundant and should not be used to update the
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measure of uncertainty. In another situation the two facts very seldom occur

simultaneously and if they do, then this is an important indication concerning the

hypothesis in question. If they do occur simultaneously, the updating of the measure

of uncertainty should have drastic consequences. Classical probability theory which

treats these two situations equally cannot be considered useful.

Another argument against the probability theory is that : Is it Justifiable

to attribute a certain measure of uncertainty to the observation of a given fact,

irrespective of the circumstances? For example let's take the example of a medical

diagnostic system: If a symptom Z is observed, and a measure of uncertainty is used

concerning the hypothesis of the presence of a certain disease, can this measure

remain valid, ff this disease occurs much more frequently than before? Once again

an appropriate use of probability theory reveals the kind of dependence prevailing in

this case. However, this will not be a popular result, because it states that a

diagnostic system using this type of measure of uncertainty cannot be applied to

populations showing different frequencies of this disease.

The problems of using probability models are compounded by the fact

that people do not really understand the theory [6]. The theory itself is consistent.

and correct, but in order to apply it we need to make assumptions about underlying

distributions and independence and sometimes use sophisticated mathematics to

develop a consistent model for the system. Even given a consistent model people

find it hard to estimate conditional probabilities, ff enough data is not provided.

Statistical tests are a method of using probability theory to Judge the weight of

evidence and of selecting an hypothesis from two alternatives. However, many of

the theorems and methods needed when using probabilities in diagnostic systems

require the expert to estimate probabilities, sometimes without recourse to relative

frequencies. Yet another problem with forcing experts to describe their inference in

terms of probability theory is that the theory is not a natural method of reasoning.



1.4 Discussion

Recently, a lot of time and effort has been expended by the expert

systems research community to the acquisition of knowledge under uncertainty.

Uncertainty arises in many different situations. !t may be caused by the ambiguity In

the terms used to describe a specific situation, it might be caused by skepticism of

rules used to describe a course of action or by missing and/or erroneous data.

In order to deal with uncertainty, techniques other than classical logic

need to be developed. Statistics is the best tool available to handle likelihood.

However, in many cases probabilities need to be estimated, sometimes without even

recourse to relative frequencies_ Estimates. then are ilkely to be very Inaccurate.

Many authors have cited theoretical weaknesses of expert systems based on

statistical technique. In particular, there has been an attempt to create a system for

the verification of indications for treatment of duodenal ulcers by HSV on the basis

of statistics. The results were counter-Intuitive and the system was rejected by

physicians. The Dempster- Shafer theory of evidence or the theory of belief

functions, give a useful measure for the evaluation of subjective certainty. The

Dempster-Shafer theory has recently become popular. For an In depth-look at the

Dempster-Shafer theory the reader is referred to [10]. Fuzzy logic, based on

Zadeh's theory of fuzzy sets (where the degree to which an optional element (a]

belongs to set (A) is determined by assigning it a value or grade ranging from 0 to 1 )

is another means of handling uncertainty. However, this too has problems [9].

There is extensive literature on ways to deal with uncertainty in expert systems, like

a combination of statistics and fuzzy logic, theory of endorsements [1], non-monotic

logic [7, 81. modal logic etc. [51.

One of the most popular ways to acquire knowledge is based on learning

from examples. An effective tool to infer knowledge from examples is rough set
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theory. Rough set theory was introduced In 1981 by Z. Pawlak as a method to

acquire knowledge under uncertainty. Re main assumption of the rough set theory

is that the information stored in the data base like system, called an information

system, may contain inconsistencies. In the process of acquiring knowledge these

inconsistencies are taken into account. Thus, using the basic tools of rough set

theory, which we will look at closely in the next chapter, two sets of rules are

produced namely certain and po_ible. The main advantage of the rough set theory

is that it does not need any preliminary or additional information about data like

probability in statistics. Moreover rough set theory has been successfully

implemented in knowledge-based systems in medicine and industry. In pa_icular,

an expert system based on rough set theory for engineering design is being

developed at Wayne State University, Michigan, and University of Regina, Canada.

1.5 Scope.

In this work, we will deal with a setting where a decision maker is

faced with uncertain (i.e. fuzzy) symptoms and makes a fuzzy diagnosis which might

be strongly or weakly based on these symptoms. The cases which we will look at are

not "textbook cases" and the values of attributes are not crisp. Moreover the

diagnosis is not of a "pure type". It is a mixture of several "pure types". Thus, a

patient might have a diagnosis of the type .3/DA + .6/DB meaning that the physician

believes the fuzzy symptoms reflect disease DA with strength .3 and disease DB with

strength .6. From such a setting we will extract fuzzy rules using the rough set

theory.

Fuzzy rules are naturally present in descriptions, crisp rules are the

exceptions. Also, fewer fuzzy rules are needed than crisp ones to build an expert

system. Thus a rule such as : If the tumor is somewhat large then the presence of

8
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skin cancer is somewhat likely is the type of rule experts naturally use as opposed to

giving the size of a tumor and a number expressing the probability of cancer.

In the first part of this work we will develop a methodology to extract

rules such as the ones stated above, from fuzzy symptoms and fuzzy diagnosis. In

fact we will extract two sets of rules i.e. certain and possible rules as well as a

measure of how much we believe these rules. In the second part we will look at a

related problem that is to define the diagnosis in terms of the symptoms. In the

next chapter we take an in-depth look at the rough set theory which Is necessary to

understand the rest of this paper.
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CHAPTER 2

ROUGH SETS

Acquiring knowledge under uncertainty is one of the main problems of

expert systems. One of the most popular ways to acquire knowledge is based on

learning from examples. In 1981, Z. Pawlak introduced a new tool, namely rough

set theory to acquire knowledge under uncertainty. In this chapter we look at the

basic concepts of rough set theory. Other methods have been developed prior to the

introduction of rough set theory. However, use of the rough set theory seem to have

many advantages over the other methods. One of the main advantages of the rough

set theory is that it does not need any preliminary or additional information about

data (like probability In statistics, basic probability number In Dempster-Shafer

theory, grade of membership, or the value of possibility in fuzzy set theory).

Another advantage of rough set theory is that its algorlthms are very simple, and the

theory itself is clear and easy to follow. Moreover the theory has been successfully

implemented in many cases in expert systems in medicine and industry.

2.1 Basic Notations and Concepts

All the concepts mentioned in this section can be found in [4]. Let U be

a non empty set, called the universe, and let R be an equivalence relation on U

called an indlscernlbiIlty relation. An ordered pair A = (U,R) is called an

approximation space. For an element x of U, the equivalence class of R containing x

will be denoted by [X]R. Equivalence classes of R are called elementary sets in A. We

assume that the empty set is also elementary, Any finite union of elementary sets in

A is called a definable set in A.

I0
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Let X be a subset of U and we wish to define X in terms of definable sets

in A. Thus. we need two more concepts. A lower approximation of X in A. denoted

by LLX, is the set given by

{x £ U I [xlR C_ X}.

An upper approximation of X in A, denoted by RX. is the set given by

{x• U I [xlR n X _ _}

The lower approximation of X in A is the greatest definable set in A.

contained in X. The upper approximation of X is the least definable set in A

containing X. A rough set in A (or rough set. if A is known ) is the family of all

subsets of U having the same lower and upper approximations in A.

Let X and Y be subsets of U. Lower and upper approximations of X and Y

in A have the following properties:

RXC_XC_RX

RU = U = RU.

Re =_, =R4,,

R(X U Y) _RX u BY,

_(x u v)=_u _'.

E,[X NY)=_RX _ RY,

_(x n v_ c_ ix n K_,.

E4X - Y) c BX - RY.

RtX - Y) _ ix - Vn,,

l_(-x) = -_

_(-m = -Bx

l!X u R(-X) =X.

RIB)O= _[am - Ex.

_lix_ = RIVo0 -- _X

where -X denotes the complement U-X of X.
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Let x be an element of U. We define two addltlonal membership relations _.

and _, called strong and weak memberships, in the following way

x__X i/l'x e _RX

and

w

xe Xiffx ERX

with meanings: x is certainly in X and x is _ in X respectively. Our

terminology originates in that we want to decide if x is in X on the basis of definable

sets in A rather than on the basis of X. This means that we deal with RX and RX

instead of X, and since LL_ _c X c_ RX, if x is in _X it is certainly in X. On the

other hand. if x is in RX, it is possibly in X.

2.2 Information Systems

An information system is similar to a data base. The difference is that

the entities of such an information system, called objects, do not need to be

distinguished by attributes. The information system serves as the basis for

knowledge acquisition, producing rules from examples. Therefore, attributes are

divided into two types: conditions and decisions [or actions). Objects are described

by values of conditions, _whfle classifications made by experts are represented by

values of decisions.

For example, ff the system is a hospital, the objects would be patients,

the condition attributes would be tests, and the decision attributes would be

diseases. Each patient would be characterized by test results and would be classified

by physicians (experts} as being on some level of disease severity. As another

example if the system is an industrial process, the objects would be sample of

processes taken at some specific moments in time. Conditions would be the

parameters of the process, while the decisions would be actions taken by the

operators (experts).

12



An information systemS is a quadrapule(U.Q.V,P)whereU is a non

emptyfinite set, and its elementsarecalledobjectsof S. Q = C L, D is a setof

attributes, C is a non emptyfinite set, Its elementsarecalled condition attributes of

S. and D is also a non empty finite set, and its elements are caUed decision

attributes of S. D _ C = @.

V = UqEQVq is a non empty finite set, and its elements are called values of

attributes, where Vq is the set of values of attribute q, called the domain of q. and

p is a function of U x Q onto v. called a description of S, such that p(x.q) E Vq for

allx E UandqE Q

Let P be a nonempty subset of Q, and let x, y be members of U. Objects x and

y are indiscernible by P in S, denoted by x ]_ y. fiT for each q in P, p(x,q) = p(y.q).

Obviously, ]_ is an equivalence relation on U. Thus P defines a partition on U; such

a partition is a set of all equivalence classes of ]_. This p artit!on is called a

classification of U generated by P in S, or briefly a classification generated by P.

2.3 Rough Deflnlbillty of a Set

For a non empty subset P of Q, an ordered pair (U, ]_) is an

approximation space A, For the sake of convenience, for any X c_U, the lower

approximation of X in A and the upper approximation of X in A will be called P-lower

approximation of X in S and P-upper approximation of X in S, and will be denoted by

PX and P-X, respectively. A definable set X in A will be also called P-definable in S.

Thus, X is P-definable in S ifl" PX = PX

For a non empty subset P of Q, a set x c_u which is not P-definable in

S = (U, Q, v, P) will be called P-undefinable in S. Set X is P-undefinable iff

PX * PX

The set X will be called roughly P-definable in S iff PX -" @and PX * U.

The set X will be called internally P-undefinable in S iff PX - @and PX * U.

Q

l

m

U

I

m

U

m

Q
M

i

m

m
i

m

g

I

m

g

13 m



v

w

The set X will be called externally P-undeflnable in S ill" _PX _ _ and PX = U.

The set X will be called totally P-undefinable in S iff PX = _ and PX = U.

For an internally P-undeflnable set X in S we can not say with certainty

that anyx E U is a member of X. For an externally P-undeflnable set X in S we

cannot exclude any x E U being possibly a member of X. In the next section we look

at an example which illustrates the above mentioned concepts.

2.4

table.

Table

ii

Xl

An Example

Let us look at the information system which is given by the following

1. An example of information system

C

C

Temperature Headache

normal no

high

D

Influenza

no

yes

X2 normal yes no

X3 normal yes yes

X4 subfebrile no no

X5 subfrebile yes no

X6 subfebrile yes yes

X7 high no yes

X8 high yes yes

X9 yes

14
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The classification, generated by the set C of conditions attributes,

called Temperature and Headache. is equal to

{ {Xl}, {X2, X3}, {X4}. {X5. X6}, {X7}. {X8. X9} }.

The set D of decision attributes consists of one member, called

Influenza. As can be seen in the table, an expert introduced two inconsistencies.

First, he assigned different values of condition attributes to patients x2 and x3. in

spite of the fact that both patients, x2 and x3, characterized by the same values of

condition attributes Temperature and Headache. Yet another inconsistency is

associated with patients x5 and x 6.

Let us assume thatX={x I p(x,d)=no}, i.e. X={xl, x2, x4, x5}.

Thus X represents all patients in U, classified by an expert in the same way, as

being not sick with influenza. Then

= {x 1} _ {x4) = {Xl, x4}.

_.X={xl) cs (x2. x31 _ {x4) _ {xs. x61 = {Xl. x2. x3. x4. x5. x6}

It is the presence of inconsistencies that produce a difference between the lower

and upper approximation.

In our example. (_X * , and CX _ U. therefore X is roughly C-definable in S.

For set X. sets _X and CX are illustrated by the following figures:

CX X

0

2

3

__Z
X1 )

)
X2 X3

X5 X6

X7 X8 X9
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Figure (a) lower approximation CX of set X

m
0

I

2

X

3/4,//.
/

Xl X2

X4 XS
ii

CX

X7 X8 X9

X3

X6

Figure (b) upper approximation CX of set X.

r_

The set X determines the following rough set:

{ {Xl, x2, x4, x5 }. {Xl. x2. x4, x6 }, {Xl, x3. x4. x5}. {Xl. x3, x4. x6} }.

For example, Xl __X, hencexl _ X, andx 3 _=X, butx 3 e X.

Now let us represent the decision of the expert from the example,

corresponding to set X, by rules. Any such a rule is a conditional statement that

specifies a decision under conditions. The smallest subsets of U which may be

described by rules, using the set C of conditions, are the members of the

classification generated by C. Therefore, we may represent set X by rules Iff X is C-

definable. If set X is C-undefinable we cannot represent it by a single set of rules.

Instead, we may represent sets _ and CX by different sets of rules. In particular a

rule derived from CX is ©ert_la, and a rule derived from C.X is pc_alble.

In the example, X is roughly C-definable in S. The certain rules.

corresponding to set .C,Xof positive examples and set -C.X of negative examples, are

(Temperature, low) --> (Influenza, no)

16
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(Temperature, subfebrile) ^ {Headache, no) --> (Influenza,

no],

and the possible rules, corresponding to set CX of positive examples and set -_X of

negative examples, are

(Temperature, low) --> (Influenza, no)

(Headache. no) --> (Influenza, no).

As can be seen from the above example, uncertainty is all too often

present in the conditions and the decisions. _The c_onditions and the decisions fall to

partition the universe into well defined classes and some overlap is present. In real

cases we do not have sharp boundaries between say normal, subfebrile, and high.

The best we can hope is that normal, subfebrlle, and high, "somewhat partition"

the universe by not overlapping "too much." In the next chapter we will look at a

method which would help us deal with such a setting, where attributes fall to have

sharp boundaries.
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CHAPTER 3

FUZZINESS AND FUZZY SETS

The way we humans actually store and manipulate concepts in the mind

is a subject of some debate. However, we communicate conscious processes to

other people verbally. This type of reasoning is done with words rather than

numbers.This is why we find probability theory counter-intuitive, and in some cases

difficult to understand. The many shades of meaning which give language its

richness and colour contrast with the precise rigour of mathematical theory, logic

and computer languages.

There is a difference between the meaning and usage of words. It is not

the strict dictionary definition of a word which is important, but the way in which

an expert uses a word. At times an expert may find it difficult to define a particular

word, though usually he will be able to give an example of a use. We usually find

technical terms relatively easy to define. However, commonly used words are less

easy to define, either in abstract or even in context. For example let's consider the

word "cold". What is the criterion for saying that the weather is cold? The answer

depends on factors like temperature and the time of year. For instance a cold

summer's day can be milder than a warm winter's day. It is relatively easy to quote

examples of cold days and days which are not cold. There is a vagueness or fuzziness

about a certain range of temperatures; they might constitute coldness, and they

might not. In this chapter we take an in-depth look at this aspect of vagueness or

fuzziness.

i8



3.1 Fuzziness

Everyone uses fuzzy words in their everyday lives, and seldom question

whether they or others understand their usage of those words. An individual may not

be consistent in his own use of words, and there is even less chance that someone

else has the same usage. Nevertheless, we all use words expressing belief when we

are reasoning or arguing. For example, let us look at a quote from a doctor:

"I wouldn't expect that disease in a young .girl of 20. It's so rare as to be

negligible. It isn't worth carrying out the test on a young person. If they're

young I'd most likely not do the tests. If they are older I probably would do

them."

Here the doctor is using vague rules. Some fuzzy words which he uses are young,

older, negligible, so rare, most likely, probably etc. When pressed to define such

words, experts oRen find it extremely difficult.

There Is also a dtstlnctJon between uncertainty and imprecision, which

is not always reflected in the models used in computer systems. Uncertainty refers

to something which is not known for sure, and imprecision refers to something

whose value is not known accurately. Statements can be uncertain, Imprecise or

both. For example:

"1"here will definitely be a rise in temperature: somewhere between 10

degrees and 25 degrees."

is imprecise but certain whereas:

"I think you should leave it on. If so you should set it to 180 degrees."

is precise but uncertain.

3. I. 1 IF .... THEN rules

Crisp mathematical rules can be easily defined. The basis for a rule is:

IFAthenB orA-->B
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This states that ff A is true, then B is necessarily true too. It does not state that B

implies A. and B can be true with A false. It is difficult to find a clear example of this

concept except in the context of mathematics, for example:

fiX=2 thenX2 =4

Note that X 2 -- 4 does not mean that X is the value 2: X = -2 is another solution. The

rule is exactly equivalent to:

Not B --> Not A

Unfortunately, in common usage "if' and "only if' are interchanged and used

improperly all too often.

Statements based on logic are made more complex by the use of AND

and OR. AND is easy to understand, but OR is ambiguous. If a child is told "You can

have sweets or an ice cream", the child will usually understand that she is not

allowed both. This Is an exclusive OR, The statement 'q'he leaves on the tree are

green or yellow" implies that possibly some leaves are green and others are yellow.

This is an inclusive OR: Yellow and green can occur together. The English language

does not distinguish between these two meanings, and the interpretation may

depend on the context. In formal logic and computer logic, the inclusive OR is

more common. Further ambiguities arise when both terms AND and OR are used in

the same statement. For example let us consider the rule:

"ff the patient is over 40 and has high blood pressure or is female then I

would refer them."

Does this statement mean:

"ff the patient is over 40 and has high blood pressure or ff the patient is over

40 and is female then I would refer them."

or does it mean:

"ff the patient is over 40 and has high blood pressure or ff the patient is

female then I would refer them."

20



Only the person who made the statement can identify the correct interpretation.

Note that the two interpretations give potentially different outcomes for a female

patient under the age of 40. Again, In computer logic the meaning is unambiguous -

the problem arises because of the way we use words.

m

w

3,1,2 Symptoms

Much Judgement and reasoning using vague rules involve weighing up

the strength of evidence in symptoms. For example;

"Meniere's disease causes spells of dizziness."

is a rule of the form:

If A then B

i.e. ff you have Meniere's disease then you will have spells of dizziness.

that a patient has spells of dizziness then it is more credible that he has Meniere*s

disease. However, dizziness can be caused by other illnesses or disorders. If

dizziness is a common ailment for this type of patient then we do not have much

evidence for Meniere's disease, but ff it is rare except as a consequence of the

disease, then our inference is stronger. The strength of our inference depends on

how likely B is in itself. If B is very common, then we have little evidence for A; if B

is very rare then A becomes much more credible. So B is true makes A more

credible is our vague rude. _ _ _.... :_

In practice, there is usually more than one symptom, or evidence, i.e.

the rule is •

A--> B1, B2 ....... Bn

For example:

"Meniere's disease causes spells of dizziness, tinnitus, and progressive

hearing loss."

If we are told
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This form of reasoning is the one which is often represented by Baye's rule. The

weights of evidence used in the doctor's diagnosis are not independent: it is a

combination of symptoms which gives credibility to the solution.
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3.1.3 Uncertainty in Data

The vagueness or uncertainty which is an intrinsic feature of Judgement

is not unique to rules. Data presented to an expert or expert system can also be

uncertain. Some data are clear facts with a yes/no answer, for example:

The applicant is over the age of 18

but others may be fuzzy:

The patient may have suffered from indigestion

So expertise involves dealing with uncertain data, and uncertain inference rules

using that data. Much of the skill in Judgement lies in weighing up the relative

merits of data, facts guesses and hypothesis, etc., and using a plausible line of

reasoning with them. There are essentially two aspects to this uncertainty: belief

and value. Belief is analogous to probability and measures the level of credibility

whereas probability is a numerical measure. People generally use words to express

belief. There are over 50 terms in the English language expressing belief, and the

number can be increased by qualifiers such as very, extremely etc. However, if a

subset of these terms could be agreed upon, together with an hierarchy expressing

the relationships between them, then there is no reason why the expert should not

be able to express his knowledge in simple English which is natural to him. For

example the figure on the next page shows a simple hierarchy showing the

relationships between terms such as possible, certain and definite. A term low

down on the hierarchy is stronger than the one higher up. So 'certain' is stronger

than 'probable', and proved implies 'definite'. The main problem with this is

ascertaining whether the expert is consistent in his usage of words, and whether

22



the agreedrelationships makesenseto other people. The other element, that of

value,is analogousto risk. Termsexpressingvalue arethosesuch as fatal, serious.

dangerous, undesirable, etc. A possibility which Is consideredlikely and serious

may warrant immediate investigation, whereasone which is highly probableand

undesirablemay not. It will be necessaryto draw up similar diagrams representing

POSSIBLE

PROBABLE LIKELY

CERTAIN DEFINITE

lip

J
i

W
IB

i

411

I

M
gU

PROVED

Figure (a) Hierarchy chart representing relationships
between words.

relationships between words describing risk or Value as well, if the uncertainty

handling is to be written in words. If the expert can do this then it will usually be a

valuable exercise. The problem, with using words is that there is such an abundance

to choose from, but the advantage is that the language is easy for the expert to use,

Risk is extremely important in reasoning processes. A low probability high risk
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situation might warrant investigation before a high probability low risk one. It is the

importance which matters. Reasoning seems to be multi-dimensional and probability

theory on Its own seldom provides an adequate framework. In other words objective

probabilities do not embrace all facets of human Judgement.

r

v

3.2 Fuzzy Sets

Even though numerical models for belief have many disadvantages, it

cannot be denied that many famous expert systems do use them. Pure probability

theory has been considered inadequate and some famous systems use certainty

factors. Another important theory which is used in expert systems is the fuzzy set

theory. Fuzzy set theory and fuzzy logic were formulated by Zadeh, and have since

been applied to many problems where traditional crisp logic and mathematics are

inappropriate because of the inherent uncertainty. In traditional logic a proposition

is true or false; in fuzzy logic it has a degree of truth. For example, let us consider

the question:

Is the object black'? (or white)

In crisp logic the answer can be either yes (black) or no (white). In fuzzy logic an

object would be given a degree of blackness, where 0 indicates 'definitely not' and I

indicates 'definitely'. An off-white object could be measured by 0.2, say, and a grey

object by 0.6. This would not mean that one was three times as black as the other,

but would enable the members of a set to be ranked. Let U be the universe of

discourse or domain:

U=UI +U2+ .......... +Un

So U is the set of n objects U1, U2 ..... Un which we are considering. A fuzzy set F

is described by its members and their degrees of membership to that set, for

example:

24
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F = MI/UI + M2/U2 + .......... + Mn/Un

UI. U2 ...... Un are members wlth degrees of membership M I. M2, ::.. Mn, and +

denotes union not addition. In other words this equation is a way of listing the

various members together with their degrees of membership. Equivalently, F is

given by:

F = _ MF (Ui)/Ui

where _ denotes 'the set of. We also define the fuzzy versions of union [inclusive

OR), intersection(AND) and complement (NOT].

The grade of membership of U in the union F t_' G (F OR G} is at least

that of its membership in the individual sets F, G. We do not know any more than

this, and so the grad e of membership is given by the maximum of the two. So:

F U G --- E M F (UIVMG{U)/U

where V denotes maximum. The grade of membership of U In FO G (F AND G) can be

no greater than the membership in each of F and G. So intersection is defined by:

FNG = 12VIF(U]^MG(U)/U

where ^ denotes minimum. The value 1 denotes full membership and 0 no

membership. The complement of F, F' is given by

F'= Z(I-MHU)I/U.
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XI

X2

X3

X4 X5 X6
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Figure (b) Set of six figures

Now let us look at an example by considering the objects in figure(b). Suppose L is

the fuzzy set of large shapes, and R the fuzzy set of round shapes then L and R could

be defined by:

L - 0.1/X1 + 0.6/X2 + 0.6/X 3 + 0.8/X4 + 0,4/X 5 + 0.2/X 6

R = 0.1/XI + 0.7/X 2 + 1.0/X 3 + 0.5/X 4 + 0.1/X 5 + 1.0/X 6

L U R is the set of objects which are large or round. X 1 is not really large and not

particularly round, so its membership in LU R is low. X6 is not large but perfectly

round so its membership in large or round is 1.

L U R= 0.1/XI + 0.7/X2 + 1.0/X3 + 0.8/X4 + 0.4/X5 + 1.0/X6

L_R is the set of objects which are large and round

L = 0.1/X I + 0.6/X2 + 0.6/X 3 + 0.5/X4 + 0.1/X5 + 0.2/X6

28
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P[L)

P(l_

P(LUR}

In this case X5 and X 6 have low membership values for large and round {Lr R}

because membership In at least one of L and R is low. The strongest membership is

for X2 and X3 both of which have fairly high membership m both L and m R together.

L' ts the set of not large {i.e. small} objects

L'= 0.9/X1 + 0.4/X2 + 0.4/X3 + 0.2/X4 + 0.6/X5 + 0.8/X6

So X1 has a high membership m L' and X4 has a low membership. The different

membership values mean that it is not sensible to count the members m a fuzzy set.

Instead we can define the power P of a set F by:

P(F} = Z MF{X)

So in our figure{b}:

= 2.7

= 3.4

= 4.0

In the next chapter we discuss the concepts of the present work, which is to

extract fuT_ rules under uncertainty and to measure de_bili_ using rough sets.
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CHAPTER 4

EXTRACTING FUZZY RULES

AND MEASURING DEFINIBILITY

The main purpose of the present work is to study a setting where a

decision maker (expert] is faced with uncertain [i.e. fuzzy) symptoms and makes a

fuzzy decision. Let's keep in mind that these decisions may be strongly or weakly

based on the conditions. From the data we have, we will extract fuzzy rules, in fact

we will extract two sets of rules i.e. certain and possible rules as well as a measure

of how much we believe these rules. Finally we will define the decisions in terms of

the symptoms. Before we go any further we will look at the properties, notations and

operations of fuzzy sets which is required to understand this work.

4.1 Functions on pairs of fuzzy sets

We now look at some functions and properties of fuzzy sets. All the

concepts explained here can be found in [2]. Let's recall from the previous chapter

that a fuzzy subset A of U is defined by a characteristic function

_A : U ........ > [0,I].

The notation

zat/xi (0 <at_I)
I

denotes a fuzzy subset whose characteristic function at xi is ai.

Moreover let us recall that if A and B are fuzzy subsets AD B, AL_B, -A are defined by

Min{ _A(X), _B(X) }, Max{ _A(X), _B(X) }, and I- )_A(X) respectively. The

Implication



A ..... > B ks defined by -AC B and the characteristic function corresponding to -AL B

is given by

Max{ I- A_x}. B(XJ ].

Let us now go through _ _mple and see how these Work:

LetA=(.5, .7, .2, .4) and

Let B - (.4, .8, .9. .6)

then we have the following :

Min{ _A(X), _tB(X) } = [.4, .7, .2, .4)

Max{ l_A(X), _B(X) } = (.5, .8, .9, .6)

1- _A(X) = (.5, .3, .8, .6)

Now we look at two new functions on pairs of fuzzy sets.

I(ACB) = in/Max{l-A(x), B(x) }
X

J(A#B) = Max Min {A(x), B(x) }.
X

where A and B denote fuzzy subsets of the same universe. The function I(ACB]
7 .... : Z

measures the degree to which A is included in B and the function J(A#B) measures

the degree to which A intersects B. If A and B are crisp sets it is evident that

I(A c B) = i ff and only ff A C-B

otherwise it is O.

Moreover m the case of crisp sets

J(A#B} = I ff and only ff A_B _0

otherwise it is 0.

: _ _ _ "722 52 25 2

In addition to the above, lets also look at the following relation as sHo_ in [21

I[ACB) = 1- JLA#'B).

The right hand side of the above equation is
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inf (1 - Min{A(x]. l-B(x) })
x

= Inf Max {1-A(x), l-(l-B(x)) }
X

-inf Max [I -A(x), B(x)}.
X

In the next section we go through an example and show step by step

how fuzzy certain and possible rules can be extracted from raw data.

4.2 An Example

Let us consider the following table which is the kind of raw data we will

be dealing with in this work, i.e. we ,,rill have a set of conditions and a set of

decisions whose values are given using the fuzzy set theory.

v

PATIENTI_ SIZE CCLOR DECISIONS

P1 3/L + .8/S .2/R + .9/B .3/DA + .6DB

P2 .4/L + .7/S .4/R + .7/B .8/DA + .5/DB

P3 7/L + .4/S .6/R + .7/B .5/DA + .9/DB

P4 .8/L + .5/S .3/R + .8/B .7/DA + .3/DB

P5 .2/L + .7/S .2/R + .5/R .4/DA + .2/DB

P6 .9/L + .2/S .8/R + .2/B .7/DA + .8/DB

P7 .3/L + .6/S .7/R +. I/B .4/DA + .5/DB

w

m

L - Large R = Red

S = Small B = Blue

30

D a = Disease A

Db = Disease B



I

We will interpret the above table as a case where an expert is trying to determine the

presence or absence of a disease by looking at the size and color of a tumor. The

first column represents a number of patients i.e. P1, P2 ..... PT. The symbols L and S

stand for large and small respectively, and the symbols R and B Stand for Red and

Blue respectively. So we can interpret that patient P I has a tumor that is Judged to

be .3 large and .8 small. In this particular case, let us assume that a number of

physicians are looking at the tumor, and that a certain number of them Judge the

tumor to be large, and others Judge It to be small. So in our case the numbers .3 and

.8 denote relative frequencies. However. it does no¢ nee_d to be so, i.e. these

numbers could reflect some judgement and need not be generated as relative

frequencies. The decision column shows a fuzzy diagnosis. So from our table, one's

interpretation could be that patient P I is diagnosed to have disease DA and the

corresponding belief is .3. Also patient PI is diagnosed to have disease DB and the

corresponding belief is .6 strong.

Now what we want to do is to take these cases and unravel them into

fuzzy rules as to when disease DA or DB is present. The first step is to take this raw

data and convert them into fuzzy sets as follows:

DA=.3/X1 + .8/X2 + .5/X3 + .7/X4 + .4/X5 + .7/X6 + .4/X7

The fuzzy set for DA is obtained by taking the union Of the values of DA of all the

patients. Similarly fuzzy sets are created for large, small, red and blue as follows:

L=.3/XI ÷ .4/X2 + .7/X3 + .8/X4 + .2/X5 + .9/X6 + .3/X7

S=.8/XI + .7/X2 + .4/X3 + .5/X4 + .7/X5 + .2/X6 + .6/X7

R=.2/XI + .4/X2 + .6/X3 + .3/X4 + .2/X5 + .8/X6 + .7/X7

B=.91X1 + .71X2 + .71X3 + .81X4 + .51X5 + .21X6 +. fIX7

The next step would be to find the minimum degree to which possible combinations

of symptoms imply disease DA i.e. find the certain rules. This is done by computing

31
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I(LCDA), I(SCDA). I(RCDA), I(BCDA). I(LPRCDA), I(LP_BCDA),

Similar computationswould becarried out for DB.

Carryingout the computationswouldyield the followingresults:

I(LCDA) =.5

I(S c DB)=.3

I(Bc DA)=.3

I(L C_R CDB)= .6

l(S C_R CDA)= .4

I(S_BCD B) =.5

Nowall theseyield certain rules.

I(LC DB) =.3

I(RC DA) =.4

I(BCDB] = .3

I(L _B CDA)= .5

I(SP,R C'DB)= .5

I(S_RCDA).

I(S c DA)=.3

I(RCDB) =.5

I(L nR CDA) = .5

I(L_ B CDB) = .3

I(S _B CDA) = .3

But we may not want to keep all the rules in order

to avoid any partial implications. So we would set a threshold value, say for this

example let us choose threshold value (_) to be .5. This would throw away any rule

which evaluates below this threshold. Of course the lower the o_is, the more partial

implications are taken into account. The choice of a is very much problem

dependent. So after applying the threshold value the certain rules we are left with

are as follows: If the tumor is large then DA is present is 0.5

If the tumor is large and red then DA is present is 0.5

If the tumor is large and blue then DA is present is 0.5

If the tumor is red then DB is present is 0.5

If the tumor is large and red then DB is present is 0.6

If the tumor is small and red then DB is present is 0.5

If the tumor is small and blue then DB is present is 0.5

L

Next we find the possible rules by using the second function which is J(X#Y). Again

we choose a threshold value and discard any rules which falls below this threshold

value. These values measure the degree to which X intersects Y, and the rules

generated by these are the possible rules. So carrying-out the computations we get :
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J(S#DA) =.7

J(R # DB) = .8

J(L _ R #DA) = .7

J(L _B#D B) = .7

J(S _B #DA) = .7

J(S#DB) =.6

J(B#DA) =.7

J(LPR#D B) =.8

J(S PR #DA) = .4

J(S P,B#DB) = .7

J(R# DB) = .7

J(S# DB) = .7

J(L P B #DA) = .7

J(S PR #DB) = .5

For the possible rules let us set the threshold valUe (a) to .6. This would yield the

following possible rules.

If the tumor is large then DA is possible 0.7

If the tumor is small then DA is possible 0.7

If the tumor is red then DA is possible 0.7

If the tumor is blue then DA is possible 0.7

If the tumor is large and red then DA is possible 0.7

If the tumor is large and blue then DA is possible 0.7

If the tumor is small and blue then DA is possible 0.7

If the tumor is large then DB is possible 0.8

If the tumor is small then DB is possible 0.6

If the tumor is red then DB is possible 0_8

If the tumor is blue.then DB is possible 0.7

If the tumor is large and red then DB is possible 0.8

If the tumor is large and blue then DB is possible 0.7

If the tumor is small and blue then DB is possible 0.6

Now we are ready to extract the certain and possible rules.

look at how this is done.

In the next secti0n we
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4.3 Extracting Rules

The method used for extracting rules differ for the certain and possible

rules. We wtU look at each case individually. First we look at how to extract certain

rules. To extract certain rules:

i) All rules with unique degrees of belief are kept.

2) In case two or more rules have the same degree of belief then the one

with the smaller number of attributes are kept.

Applying these rules to the above stated certain rules we get the following extracted

certain rules.

If the tumor is large then DA is present is 0.5

If the tumor is red then DB is present is 0.5

If the tumor is large and red then DB is present is 0.6

If the tumor is small and blue then DB is present is 0.5

Now we see how to extract possible rules. The steps are as follows:

I] All rules with unique degrees of belief are kept.

2) In case two or more rules have the same degree of belief then the one

with the larger number of attributes are kept.

Applying these rules to the possible rules shown above we get the following extracted

possible rules:

If the tumor is large and red then DA is possible 0.7

If the tumor is large and blue then DA is possible 0.7

If the tumor is small and blue then DA is possible 0.7

If the tumor is large and red then DB is possible 0.8
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If the tumor is largeand blue then DB is possible0.7

If the tumor is small and blue then DB is possible 0.6

4.4 Measuring Deflnibility

Now we turn our attention to defining the fuzzy terms involved in the

diagnosis as a function of the terms used in the symptoms. How well we are able to

do thls, Is a function of how much the decision follows the condltlons. The

concepts explained here are from [2]. Let {Bt] be a finite family of fuzzy sets which

does not necessarily form a partition of the u nJversal set. Let A be a fuzzy set. Then

we can define the lower approximation of A through {Bi] as

R(A) = UI(BiCA)Bi .
i

In cases where [(BiCA) is less than some threshold a it is advantageous to throw

away all the sets Bi. In this case we have

R(A) a = UI(Bi CA) Bi.

Similarly we show an upper approximation of A through {Bi}

(A) = UJ (Bi # A)Bi
i

and ; T

R (A) a = Uj(BI # A) B I

Returning to our initial example and applying these concepts:

andBl=L; B2 =L_R; B3 =LrB; B4=SPBthenwehave

ff we choose_ ato be .5

R(DA).5:.5L U .5(St'B)

Thus we can use a combination of Large and Small and Blue can to describe the set of

patients that are certainly sick through the symptoms L,S,R,B. Similarly, if we pick

a to be .6 then we get
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(DA).6 =.TL _ .7S _ .7R _ .7B
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In this work we looked at a method which allows us to acquire

knowledge from data which contains uncertainty or missing and/or erroneous data.

The knowledge is acquired by looking at examples. These examples are more or less

llke an information system, that is it contains a set of conditions and a set of

decisions. These conditions and situations contain attributes whose values are

subject to Judgement, i.e. the attributes are not crisp, but are fuzzy sets. From this

raw data, which contains uncertainty, we looked at how we could extract rules as

well as measures of how much we trust these rules. In fact we generated two kinds

of rules. The two sets of rules we generated were as follows, those generated by

certainty and those generated by possibility. Finally we looked at how we could

define the fuzzy terms involved in the decisions as a function of the terms used in

the conditions. A program which incorporates all this is given at the Appendix

section.
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%W

L

--am

Program Extract_Fuzzy_Rules(Input,Output);

{****** PROGRAM FOR PARTIAL FULFILLMENT OF THE REQUIREMENTS ******)

{****** FOR CS 4395 ******}

(****** ******)
{****** Programmers : Donald Culas ******}

{****** Jeff Worm ******}

{****** ******)
{****** This program simulate the ideas set forth in ******}

{****** Dr. Andre de Korvin's paper, "Extracting Fuzzy Rules ******}

{****** under uncertainty and Measuring Definibility using ******}

{****** Rough Sets". The program is designed to combine the ******}

{****** methods of rough sets and fuzzy sets to measure ******}

(****** uncertainty. Fuzzy rules are extracted to provide ******}

{****** the user a foundation from which they may formulate ******}

{****** a decision. ******}

{****** ******)
*********************************************************************
*********************************************************************

const

max cases - I00;

type

str - string [I0];

fuzzy_array = array[l..max_cases] of real;

struct - record

attl : str;

att2 : str;

value attl : real;

value att2 : real;

end;

cond struct - record

c_nsider :str;

firattr : str;

secattr : str;

firattr 1 : str;

firattr 2 : str;

secattr i : str;

secattr 2 :str;

end;

dec struct - record

c_nsider : str;

firattr : str;

secattr : str;

end;

value struct s record

kind 1 : str;

kind 2 : str;

dec _ind : str;

val_e : real;

attr : integer;

tag : integer;

end;

case struct - reco_d

--condition I struct;
_ _I_ ,



decision : struct;
w

end;

info ffi array[l..max cases] of case struct;

value_array - array--[l..9] of valu__struct;

vat

cases : info;

thresh : real;

m ch, sit ch, d ch, val ch, see ch : char;
n_ of cases,cEunt : _nteger[

re_d _ata : boolean;

condition : cond struct;

decision : dec struct;

condl attl arr,_ondl att2 arr, cond2 attl arr, ccnd2 att2

dec a_tl a?r, dec att_ arr_inter array : _uzzy_arra_;

decTsubTdec2_su_,dec__inter,de_2_inter : value_array;

g

u

i
I

_art : fuzzy_at

W
I

I

vat

blank : string [I0];

begin
blank := ' ''

con consider :- blank;

con

con

con

con

con

con

dec

dec

firattr :ffiblank;

secattr :m blank;

firattr 1 :- blank;
w

firattr 2 :- blank;

secattr 1 :- blank;

secattr--2 :- blank;

conside_ :ffiblank;

firattr :ffiblank;

:- blank;

{ INITIALIZE }

_I

mm
n

I

I

!

m

I

dec. secattr ..... ___

end; { INITIALIZE }

procedure read situation(var con : cond struct;

vat dec : dec_struct);

begin { READ SITUATION }

writeln;

writeln; _

writeln; -- .

writeln('Please enter the attribute under Consideration ');

write(' (eg.tumor, weather, etc... ) : ' );

I

i

readln (con. consider) ;

writeln;

write('Please enter the decision attribute (eg. disease, factory, etc..

readln (dec ._0nsider) ; w



_r writeln('Please enter the two attributes of ',con.consider, '

oking at') ;
write('First attribute of ',con.consider, ' : ') ;

readln (con. firattr) ;
write('Second attribute of ',con.consider,' : ') ;

readln (con. secattr) ;

writeln;

writeln;
writeln('Please enter two attributes for ',con.firattr) ;

f f

write('First attribute for ',con.firattr, : ) ;

readln (con. firattr i) ;

write('Second attribute for ',con.firattr,' : ') ;

readln (con. firattr_2) ;

writeln;

writeln;

writeln('Please enter two attributes for ',con.secattr) ;

write('First attribute for ',con.secattr, : ) ;

readln (con. secattr i) ;
__ . f •

write('Second attribute for ',con.secattr, : ) ;

readln (con. secattr_2) ;

L • writeln;

writeln;

writeln('Please enter two attributes for ',dec.consider);

_- write('First attribute for ',dec.consider,' : ') ;

readln (dec. firattr) ;

write ('Second attribute for ',dec.consider, : ) ;

readln (dec. secattr) ;

- end; { READ SITUATION }

' 'we will bef

E

*******************************************************************

{**************** PROCEDURE SET FUZZY VALUE *********************

{**** ****)
{**** This procedure reads in real data (i.e. 20, 58, 265) ****}

{**** and converts it into fuzzy values - values between 0 ****}

{**** and 1 (i.e. 0.7, 0.3, 0.28). ****}

*******************************************************************

procedure set fuzzy_value(var val,max,min, first val,sec val : real);
begin -- { S_T FUZZY--VALUE }

if (val > max ) then

begin
first val :- 1;

sec v_l :- 0;
end

else

if ( val < min ) then

begin
sec val :- I;

first val :- 0;

end

else

end;

begin
first val :- (val - min)/(max-min);

sec v_l :- (max - val) / (max-sin) ;

end;
{ SET FUZZY VALUE }



procedure read_real ( con : cond_struct;
dec : dec struct;

var case art : info;

varn : Tnteger);
vat

I

m

firattr l,firattr_2,secattr_l,secattr 2,dec 1,dec_2,value : real;

i : integer; u

ch : char;

begin { READ REAL }

ch := 'y';
i :" i;

writeln;

write('Please enter a number you associate with definitely ',con.firattr_
: ');

readln (firattr_l) ;
write ('Please enter a number you associate with definitely ',con.firattr 2

: ');

readln (firattr_2) ;
writeln;

write('Please enter a number you associate with definitely ',con.secattr--_"
: ');

readln (secattr i) ;

write ('Please e--nter a number you associate with definitely ',con.secattr 2

: ');
readln(secattr 2) ; i

writeln;

write ('Please enter a number you associate with definitely ',dec.firattz_

'); Z
readln (dec i) ;

write('Please enter a number you associate with definitely ',dec.secattr'i

'); _--

readln(dec 2) ;,y,) . DWHILE ( (c_- or (ch 'Y') ) do

begin
case arr[i] .condition 1.art1 :- con.firattr i;

case--arr[i] .conditiom--l.att2 :- con.firattr--2; w

case--art [i] .condition--2. art1 :- con. secattr--1;

cas.--arr[i].condition--2.att2 :- con.s,cattr_2; -

case--art[ ]i .decision._ttl :- dec firattr_

case--arr [i] .decision, att2 :- dec. secattr;

writ_('Please enter a value for ',con.firattr, ' : ');
readin (value) ;

set fuzzy value (value ,firattr_l,firattr 2, case arr[i].condition 1._

attl,case a_r[i]._ondition 1.value art2); -- --
w_ite ('Please ente_ a value for ' . '..... ,con.secattr, ' ' );

=

readln (value) ;

set fuzzy value (value, secattr l,secattr 2,case arr[i].condition_2.va

attl,case a_r[i].condition 2.value ate2); - -
- w_ite('Please ente_ a value for ',dec.consider, ' • ');

ureadln (val_e) ;

set fuzzy value(value, dec 1,dec 2,case_arr[i].decision.value attl,c_

art [i] .decisTon.vaTue_att2) ; -- -

writeln; _g
i :_ i + i; _

REPEAT { Makes user enter 'Y' or 'S' ) __
writeln;

write('Please enter [y] to input more data or [s] to stop : '); i

readln (ch) ;

UNTIL ( (ch- 's') or (ch- 'S') or (ch- 'y') or (ch- 'Y') );

end; m
ch :- ' ';

n :_ i-l;

end; { READ REAL }



w

{*************** PROCEDURE CREATE CONDITION 1 FUZZY SETS *************_*}

{**** This procedure creates the fuzzy sets for the first condition. ****}

***************************************************************************

procedure create_condl fuzzy_sets( con : info;

n : integer;

var new_arr_l : fuzzy_array;

var new_arr_2 : fuzzy_array );
var

i : integer;

begin { create_condl_fuzzy sets }
for i := 1 to n do

begin

new arr l[i] :- con[i].condition l.value attl;

new_arr_2[i] :- con[i] .condition l.value_att2;
end;

end; { create_condl_fuzzy_sets

***************************************************************************

{****************** CREATE CONDITION 2 FUZZY SETS ***********************

(**** ***"

{**** This procedure creates the fuzzy sets for the second condition. ***

procedure create_cond2_fuzzy_sets( con : info;

var

i : integer;

begin
for i :- 1 to n do

begin

end;

n : integer;

vat new_arr_l : fuzzy_array;

var new_arr_2 : fuzzy_array);

{ CREATE COND 2 FUZZY SETS }

new arr l[i]

new arr 2[i]

end;

:= con[i] .condition 2.value attl;

:- con[i].condition--2.value--att2;

{ CREATE COND 2 FUZZY SETS }

procedure create_decision_fuzzy_sets(con
n

var

vat

var

i : integer;

begin
for i :- 1 to n do

begin

new arr l[i]

new arr 2[i]

end;

end;

: info;

: integer;

new_arr_l : fuzzy_array;

new_art_2 : fuzzy_array);

{ CREATE DECISION FUZZY SETS }

:- con[i].decision.value attl;

:- con[i].decision.value_att2;

{ CREATE DECISION FUZZY SETS }



procedure init(var art : value_array);
var

i : integer;
blank : string [I0];

begin
blank :i , ';
for i :- I to 9 do

begin

{ PROCEDUREINIT }

arr[i].kind 1 :- blank;
arr[i].kind 2 :- blank;
arr[i] .tag :--I;

end;
end; { PROCEDUREINIT }

I

Q

W

*************************************************************************
{****************** PROCEDURESET CONDITIONS **************************__
(**** ***+}--

{**** This procedure assigns the conditional attributes ****}D

*************************************************************************

procedure set_cond ( con : cond s%ruct; -
var arrl : value_array); U

begin { SET CONDITION }

arrl[l].kind 1 :- con.firattr I; _ _ :
arrl[l].attr--: = 2; --_ _ _

arrl[2] .kind 1 :- con.firattr_2;

arrl[2] .attr :- 2;

arrl[3].kind_l :- con.secat£r I;
--

arrl[3] .attr :- 2; m
arrl[4] .kind 1 :- con.secattr 2;

arrl [4] .attr--: _- 2;:::_-_-_- ::-

arrl[5] .kind 1 := con.firattr i;
arrl[5].kind--2 :- con.secattr_l;

arrl[5].attr :- 3;

arrl[6].kind 1 :- con.firattr i;

arrl[6].kind--2 :- con.secattr_2;
arrl[6] .attr--:_ 3;

arrl[7] .kind 1 :- con.firattr_2;

arrl[7].kind 2 :n con.secattr_l;

arrl[7].attr--: = 3;

arrl[8].kind 1 :- con.firattr 2;

arrl[8].kind--2 :- con.secattr_2;, _ _.... : ,
arrl[8].attr--:- 3;

end; { SET CONDITION } I

var arr : value_array);
var ......_ :_

i : integer_ i_ _ _-
{ sETbegin

for i :- 1 to 8 do

arr[i].dec kind :- dec.firattr;

end; - { SET DECISION_I }

_ i " _ _ -



{**** This procedure assigns the second decisional attribute ****}

**************************************************************************

procedure set_dec2(dec : dec_struct;

var art : value array);

var

i : integer;

begin
for i :- 1 to 8 do

arr[i] .dec kind := dec.secattr;

end;

{ SET DECISION 2 }

{ SET DECISION 2 }

u_

function sub ( j : integer;

arrl, arr2 : fuzzy_array)
vat

temp : fuzzy_array;
min : real;

i : integer;

begin

for i :- i to j do

begin

temp[i] :- 1 - arrl[i];

if (arr2[i] > temp[i] ) then

temp[i] := arr2[i];

end;

rain :- temp[l] ;

for i :m 2 to j do

begin

if ( temp[i] < min ) then

min :- temp[i];

end;

sub :- min;

end;

: real;

{ FUNCTION SUB }

{ FUNCTION SUB }

***********************************************************************

*************************** FUNCTION NUM ****************************

{**** ****)
{**** This function evaluates the values of J(A # B). This value ****}

{**** is the degree to which A intersects B and is used to ****}

{**** generate the possible rules. ****)

***********************************************************************

function num( j : integer;

arrl, art2 : fuzzy_array) : real;
vat

temp : fuzzy_array;

i : integer;

max : real;

begin

for i :- 1 to j do

begin

else

arr2[i] ) then
arrl (i ]

{ FUNCTION NUM }



temp[i] := arr2[i]

end;

max :- temp[l] ;

for i :- 2 to j do

begin

if ( temp[i] > max ) then

max :- temp[i] ;

end;

hum :u max;

end; { FUNCTION NUM }

***********************************************************************

{***************** PROCEDURE INTERMEDIATE **************************

(**** ****)
{**** This procedure sets the values in the intermediate array ****}

{**** for the values of I(A c B) and J(A # B) . ****}

**********************************************************************

procedure inter ( j : integer;

arrl, arr2 : fuzzy_a_y;

var temp_array : fuzzy_array);
var

i : integer;

begin

for i := 1 to j do

begin

if ( arrl[i] <= arr2[i] ) then

temp_array[i] :- arrl[i]
else

temp_array[i] :- arr2[i]
end; l

end; { INTER ) g

m

n

i

!
S

w
g

i

**************************************************************************

*********************** PROCEDURE VALUE SUB ***************************

{**** ****,_

{**** This procedure assigns the values to the corresponding terms *+- m

{**** of I(A c B). It calls on the Function SUB.

********************************************************************** =
procedure value sub( n : integer;

-- colattl,colatt2,co2attl : fuzzy array; g

co2att2,decatt : fuzzy array; --

var new art : value_array);
var

temp_arr : fuzzy_array;

begin ( VALUE SUB }

new arr[1].value :- sub(n, colattl,decatt);
new--arr[2].value :u sub(n, colatt2,decatt);

new--arr[3] .value :- sub(n, co2attl,decatt) ;

new, art [4 ] ,val_ue_ ;_! SUb (n, co2att2, dec a££)7

inter (n, colattl, co2attl, temp_arr) ;

new art[5] .value :- sub(n,temp arr, decatt) ;

inte--r (n, colattl, co2att2, temp_arr) ;

new arr[6].value :- sub(n, temp arr, decatt);

inter (n, colatt2, co2attl, temp_arr) ;

new arr[7] .value :- sub(n,temp arr,decatt);

inter (n, colatt2, co2att2, temp arr) ;

new_art [8 ] .value :- sub (n, temp_arr, decatt) ;
end; ( vALUE sub )

i
J

g

m

i

{ INTER } l



=

n

procedure init_tag(
vat

i : integer;

begin
for i := 1 to

arrl[i].tag

end;

var arrl : value_array);

8 do
:= -i;

{ INITIALIZE TAG }

{ INITIALIZE TAG }

inter(n : integer;

colattl,colatt2,co2attl : fuzzy_array;

co2att2,decatt : fuzzy_array;

var new_art : value_array);

VALUE INTER }

var

temp_array : fuzzy_array;
begin {

new arr[1] .value := num(n,colattl,decatt) ;

new arr[2] .value := num(n,colatt2,decatt) ;

new arr[3] .value := num(n, co2attl,decatt) ;

new arr[4] .value :- num(n, co2att2,decatt) ;

inter (n, colattl, co2attl, temp_array) ;

new_art[5] .value := num(n,temp_array, decatt) ;

inter (n, colattl, co2att2, temp_array) ;

new_arr[6] .value := num(n, temp_array,decatt);

inter (n, colatt2, co2attl, temp_array) ;

new art[7] .value :i num(n,temp_array,decatt) ;

inter (n, colatt2, co2att2, temp_array) ;

new_art [8] .value :- num (n, temp_array, decatt) ;
end; { VALUE INTER }

r

{***

{***

{***

{***

{***

{***

{***

{***

{***

procedure printall_head;

begin
writeln;

writeln;

writeln(' These are all the rules

writeln(' .....................

writeln(' ....................

end;

');
');
');

procedure thresh_head

begin
writeln;

(tval : real);



writeln;

writeln('

1:2:1);
writeln('

These are the rules after applying the threshold value of ',tv;_

');
writeln ('

');

end;

W

procedure certain_head;

begin
writeln;

writeln(' The following are the certain rules ');

writeln(' ...................... ');

writeln;

end;

procedure possible_head;

begin ....
writeln(' The following are the possible rules ');

writeln(' - ');

writeln;

end;

**************************************************************************....

*********************** PROCEDU_ KIND RULES *************************

{****

{**** This procedure asks the user what kind or rules they will use ****}

{************************************************************************ }

procedure kind rules (var ch : char)-;

begin -- { KIND RULES }

writeln; ......
writeln;

ch :n , , • _ -- * _ _ _ _

REPEAT

writeln( 'What kind of rules wouid_you like to see ?');

writeln(' ') ; _-_ _ _=

writeln(' Please_ enter [a] for all the rules : ');

writeln (' or ' ) ;

write(' Please enter [e] for the extracted rules: ');

readin (ch) ;

UNTIL ( (ch = 'a') or (ch-'A') or (ch- 'e') or (oh- 'E'));

writeln;

writeln;

writeln;

end;

procedure check_thresh( var ch : char;
c_or_p : char);

only the ');

begin
ch := r t.r
writeln;

writeln;

write('Do you want to see

if (c or p - 'c') then
write('_ertain ')

{ CHECK THRESHOLD }
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else

write('possible 'J ;

writeln ('rules above ') ;

writeln(' a threshold value? ');

writeln;

REPEAT

writeln;

writeln;

write('Please enter [y] to see only the ');

if (c_or p - 'c') then
write('certain ')

else

write('possible ') ;

writeln('rules which ') ;

write!n('are above a threshold value ');

writeln(' or ') ;

write('Enter [n] to see all the ') ;

if (c or_p - 'c') then
write('certain ')

else

write('possible ');

write(' rules : ') ;

readln (ch) ;

UNTIL (( ch- 'y') or (ch- 'Y') or (ch- 'n') or (ch- 'N'));

end; { CHECK THRESHOLD }

r_

**************************************************************************

{****************** PROCEDURE GET THRESHOLD VALUE **********************

{**** ****}
{**** This procedure reads the threshold value if one is entered. ****}

**************************************************************************

procedure get_tval( var num: real;
var t kind : char);

begin { GET T VAL }
write('Please enter the threshold value for the T);

if (t kind - 'c') then

write( Tcertain ')

else

write('possible ') ;

write('rules : ');

readln(num);

end; { GET T VAL }

procedure extracthead;

begin
writeln;

writeln;

writeln(' These are the extracted rules ');

writeln(' ');

writeln(' ............... ');

writeln;

end;



procedure certain_extract_head;

begin

writeln(' ');

writeln(' ');

writeln(' These are the extracted certain rules ');

writeln(' ............ ') ;

writeln;

end;

w

Im

m

g

c or_p : char;
aTpha : real;

kind : char;

art size : integer);

D

W

W

g

Q
var

i : integer;

print : boolean;

blank : string [i0];

begin { PRINT ENGLISH }
blank :m , ,.f
for i :- 1 to arr size do i

- •
begin

print :- false;

if ( ( kind - 'a') or ( kind - 'A') ) then

begin Q

if (arrl[i].value >- alpha) then

print := true
end g

else

if ( (kind - 'e') or (kind - 'E') ) then

if ( (arrl[i].value >- alpha .) and ( arrl[i].tag - I) ) then
print :- true; g

if print then

begin

write('If the ' condition consider,' is ' arrl i] kind I_,'_

if ( arrl[i].kind 2 <> blank ) then im
write (' and T,arrl[i] .kind 2);

' ' arrl[i] dec_kin6_write(' then ' decision.con_ider, ,I

if ( ( C or_p - 'c') or ( c_or p - 'C') ) then
write( --is present )

end;

writeln;

writeln;

writeln;

writeln;

end;

else ........

write ( ' is possible ');
writeln(arrl[i].value:2:l);

writeln;

end;

{ PRINT ENGLISH }

{***************** PROCEDURE POSSIBLE EXTRACT HEADER ******************}

(**** ****)
{**** This procedure generates the heading for extracted rules. ****}
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procedure possible_extract_head;
begin ( POSSIBLE EXTRACTHEAD }

writeln(' ');

writeln(' ') ;

writeln(' These are the extracted possible rules ');

writeln(' ');

writeln;

end; ( POSSIBLE EXTRACT RULES }

**************************************************************************

********************* PROCEDURE EXTRACT RULES **************************

{**** ***.}
{**** This procedure extracts the rules. First, all rules with ****}

(**** unic_/e I(AcB) and J(A#B) values are kept. Secondly, if more ****}

{**** than one rule has identical I values, the "smaller" in terms ***-)

(**** of attributes is kept. Conversely, the "larger" rules are ****}

(**** kept when dealing with identical J values. ***-_
**************************************************************************

procedure extract_rules(var arrl : value_array;

c or p : char;
thresh value : real);

vat

n,i,j : integer;

begin ( EXTRACT RULES }
n :_ 9;
for i := 1 to n-I do

begin
if ( arrl[i] .value >- thresh value ) then

begin
for j := i + 1 to n do

begin
if ( arrl[i].attr <> arrl[j].attr ) then

begin

if ( c or_p - 'c' ) then
begKn

if ((( arrl[i].kind i - arrl[j].kind 1 ) or

( arrl[i].kind--I - arrl[j].kind--2 )) an4

( arrl[i].value - arrl[j].valueY ) the-

begin

if ( arrl[i].tag - I) then

arrl[j].tag :- O;
end;

if ( arrl[i].tag - -I ) then

arrl[i].tag :- I;
end

else

begin
if (((arrl[i].kind 1 - arrl[j].kind i) or

(arrl[i] .kind-I - arrl[j].kind-2)) and

(arrl [i] .valu_ - arrl [j] .valueY ) then

arrl[i].tag :- 0;

if ( arrl[j].tag - -I ) then

arrl[j].tag :- I;

end;
end

else if (arrl[i] .tag--i) then
arrl[i] .tag :- i;

end;

end;

end;

end; ( EXTRACT RULES }



*********************** _ROCEDUR_ PRINT _ULES *************************

{***" This procedure calla on the appropriate modules and prints *''''

{....theheaders.nd o,Jtp,  -->rules ill:-
procedureprint_rules( dsubl arr,dsub2 art : value_array;

dinte_l_arr,din[er2_arr : value array) ;

,2ar

kind : char;

corD : char;
t--vaT" : real;

ch : char;

size : integer;

begin
slze :i 8;

kind rules(kind);

if ([ kind <> 'q') or ( kind <> 'Q') ) then

begin

( PRINT RULES }

if ( ( kind s 'a') or (kind - 'A')) then

begin
t val :- 0.0;

c--orp :- 'c' ;

c_ec_thresh(ch,c_or_p);
if ( 7ch - 'y') or (ch - 'Y') ) then

begin

get tval(t val,c or p);

thresh_hea_(t_vaY);

end;

printall_head; .....
certain head;

print_e_glish(decl_sub,c_or_p,t_val,kind, size);

print_english(dec2_sub,c_or p,t_val,kind, size);

C or p := 'p';
t--val 0.0 ;

o eck  resh(oh,c or-p);
if ( 7ch " 'y') o? (ch - 'X') ) then

begin
get tval(t val,c or p) ;

thresh_hea_(t raY);
end; _ ..

possible_head;

print english(decl inter, c or_p,t val,kind, size);

print--_english(dec2_inter, c_or_p,t_val,kind, size);
end

else

begin

ch :i ' '0
t_va :- .0;
C OE_D :_ 'C' ;

c_ec_thresh (ch, c_or-p) ;
if ( _ch - 'y')or (ch - 'Y') ) then

begin

get tval(t val,c or_p);

thresh_hea_ (t_va[) ;

end;

extract rules(dec1 sub, c_or_p,t_val) ;
extract head;

certain--extract head; _

print e_glish(dec1_sub, c or p, t val,kind, size) ;

extract rules(dec2_sub, c or p,t_val) ;

print e_glish(dec2_sub, c_or_p,t val,kind, size) ;

t re1--:- 0.0;

c_or_p :_ 'p' ;
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end;

end;

end;

check_thresh(ch, c or p) ;
if ( (ch = '?') or (ch - 'Y') ) then

begin

get tval(t val,c_or p) ;
thresh_hea_it va!) ;

end;

extract rules (decl inter,c_or p,t_val) ;
possible extract head;

print english(de_l_inter, c_or p, t_val, kind, size) ;

extract rules (dec2 inter, c_or_p,t_val) ;

print_e_.g!ish (dec2--inter, c_or_p, t_val, kind, size) ;

{ PRINT RULES }

************************ PROCEDUPX ASSIGN VALUES ***********************

{**** ****}
{**** This procedure assigns the values for the sample run. ****}
**************************************************************************

Procedure assign_value( vat arrl : info );
begin { ASSIGN VALUES }

arrl[l] .condition l.value attl :- 0.3; arrl[l] .condition 1.value att2 :

.8;

arrl[l] condition 2.value attl :- 0.2; arrl[l].condition 2.value art2 :
.9;

arrl[l] decision.va!ue attl :- 0.3; arrl[l].decision.value_att2 :- 0.6;

arrl[2] condition_l.value_attl :- 0.4; arrl[2].condition l.value_att2 :
.7;

arrl[2] condition 2.value attl :- 0.4; arrl[2].condition 2.value art2 :

7; -- -

arrl[2] decision.value attl :- 0.8; arrl[2].decision.value art2 :- 0.5;
w

arrl[3] condition l.value attl :- 0.7; arrl[3].condition l.value art2
.4;

arrl[3] condition 2.value attl :- 0.6; arrl[3].eondition 2.value att2
.7;

arrl[3] decision.value attl :- 0.5; arrl[3].decision.value art2 :- 0.9
w

arrl[4].condition l.value attl :- 0.8; arrl[4].condition 1.value ate_

.5;

arrl[4].condition 2.value attl :- 0.3; arrl[4].condition 2.value art2
.8;

arrl[4].decision.value attl :- 0.7; arrl[4].decision.value art2 :- 0.3

arrl[S].condition_l.value_attl :- 0.2; arrl[S].eondition l.value art2
.7;

arrl[5].con_ition_2.value_attl :- 0.2; arrl[5].condition_2.value_att2
.5;

arrl[5].decision.value attl :- 0.4; arrl[5].decision.value att2 :- 0.2

arrl[6] .condition l.value attl :- 0.9; arrl[6] .condition l.value art2
.2;

arrl[6].condition 2.value attl :- 0.8; arrl[6].condition_2.value art2
.2; -- --

arrl[6].decision.value attl :- 0.7; arrl[6].decision.value art2 :- 0.8

arrl[7].condition l.value attl :- 0.3; arrl[7].condition l.value art2

.6; -

arrl[7].condition 2.value attl :- 0.7; arrl[7].condition 2.value art2

.i;

arrl[7].decision.value attl :- 0.4; arrl[7].decision.value art2 :- 0.5



end; _ ASSIGN VALUES }

procedure exampie(var con : cond struct;
var dec : dec struct;

vat case arr : info);

var

i : integer;

begin
initialize(con, dec);

con.consider := i£um6r_;

dec.consider .- 'disease';

con.firattr :- 'size';
con.secattr := 'color';

con.firattr 1 :- 'large';
con.firattr 2 :- "small';

con.secattr I :_ 'red';
con.secattr 2 :- 'blue';

dec.firattr :- 'Da';

dec.secattr :- 'Db';

for i := 1 to 8 do

begin
case arr[iJ.condition l.attl :-

case--arr[i].condition--l.att2 :-

case-err[i] .condition--2.attl :-

case arr[i].condition 2.art2 :R
-- w

case arr[i_.decision.attl :-

case arr[i].decision.att2 :-

end;

case err );

{ EXhaLE }
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firattr i;
w

firattr 2;

secattr I;

secattr 2;

firattr7

secattr;

assign_value(

end; _ . , { EXAMPLE }
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begin
sel :i '4';

REPEAT .......

writeln('

writeln('

writeln('

writeln('

writeln('

writeln('

writeln('

writeln;

writeln;

writeln;

writeln('

writeln('

writeln(' ');

writeln('

writeln('

{ MAIN }

Here are the choices ');

********************** r) ;

i) Show a sample run of this program ');

2) Run the program using your data ');
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w

writeln (' 3) Quit

writeln(' ' ) ;

writeln(' ' ) ;

write (' Please enter your choice i, 2, or 3 : ') ;

readln(sel) ;

5_TIL ( ( sel - 'i') or (sel - '2') or (sel - '3')

end; ( MAIN }

);

');

*********************** PROCEDURE ASK SIT *******************************

{**** This procedure asks the user if they would like to use the ****}
(**** data for a different run. ****_

***************************************************************************

procedure ask_sit(vat choice : char;

vat cont : integer) ;

begin ( ASK SIT }
choice := ' ' ;

REPEAT

writeln('Do you want to use the same attributes as previously used ');

write( 'Please enter [y] or In] ');
readln(choice);

'/NTIL ( (choice = 'y')or(choice - 'Y') or ( choice - 'n') or
(choice - 'N') ) ;

end; (.ASK SIT }

************************************************************************

********************** PROCEDURE ASK DATA KIND ***********************

{**** This procedure asks the user what type of data they will be ****}

(**** using - real or fuzzy. ****}

************************************************************************

procedure ask data_kind( vat ch : char);
begin { ASK DATA KIND }

ch :_ ' ';

REPEAT

writeln;

writeln;

writeln ('What kind of data do you want to use ?');

writeln;

writeln ('Real kind : eg. ( 20 30 92 ) ');

writeln (' or ');

writeln ('Fuzzy kind : (values between 0 and 1 : eg. (.i .4 .7) ');

writeln;

write('Please enter [r] for real or [f] for fuzzy : ');

readln(ch);

UNTIL( (ch _ 'r') or (ch-'R')or(ch-'f')or(ch-'F') );

end; { ASK DATA KIND }

*************************************************************************

*********************** PROCEDURE READ FUZZY **************************

(**** ****)
{**** This procedure reads in the fuzzy values. ****}
*************************************************************************

procedure read_fuzzy(con : cond struct;
dec : dec struct;

vat case arr : info;

varn : Tnteger);

vat

i : integer;



wr_teln;

wrltein<'Weuld you like to see the data bein_ used : ') ;

write (' Please enter [y] or [n] : ') ;

readln (ch) ;

until ( ( ch - 'y') or (oh - 'Y') or (ch - 'n') or (oh .

end; { ASK SEE }

S
'N') );

J

g

************************ PROCEDURE PRINT DATA ************************

{**** ****)
{**** This is the procedure to print the data. ****}

procedure print dat(arrl

vat

i : integer;

begin
writeln(' Data

writeln;

writeln;

writeln('

p

J

: info;
con : cond struct;

dec : dec struct;

n : integer );

U

{ PRINT DATA }

being used ') ;

g

The attributes under consideration are ',con.consider,

' and ',dec.consider ); I

end; {

writeln;

writeln;

for i :s 1 to n do __

begin a

writeln(arr1[i] .condition l.attl:10,' - ' :2,arrl[i] .condition 1.value__

tt1:2:1,

' ':10,arr1[i] .condition_l.att2:10,' - ' :2,arrl[i] ._ondition_1.value_at

t2:2:1); I

writeln(arrl[i] .condition_2.attl:10,' - ' :2,arrl[i] .condition_2.value _

ttl:2 i,
, ':10,arrl[i].condition 2.att2:10,' - ':2,arrl[i].condition 2.value at []

t2:2:1) ;

writeln(arrl[i] .decision.attl:10,' - ' :2,arrl[i] .decision.value_attl:2:

i,

' - ' arrl[i].decision.value att2:2:l' ' :10,arrl[i] .decision.art2:10, :2,

);
writeln;

writeln;

end; .......
PRINT DATA }

BEGIN ....

initialize(condition,decision);

count :- 0;

m ch :_ '4';

r_peat
read data :- false;

menu (m_ch) ;

{ MA_N )



w

w

_ _ char;

_n

ch :_ 'y';
i :_ I;

while ( (ch - 'y

begin

{ P.L_J3 FUZZY }

') or (oh- 'Y') ) do

case arr[i] condition l.attl :- con.firattr l;

case--arr[i] condition--l.att2 :- con.firattr--2;

case arr[i] condition 2.attl :- con.secattr i;

case--art[i] condition--2.att2 :- con.secattr--2;

case--art[i] decision.attl :- dec.firattr7

case arr[i] decision.att2 :- dec.secattr;

wrlte('Please enter a value for ',con firattr I, ' : ') ;

readln(case arr[i] .condition 1.value attl) ;

write('Please enter a value _or ',co_ firattr 2, ' : ');

readln (case arr [i] .condition l.value art2) ;
¢ rwrite('Please enter a value _or ',con secattr I, : ) ;

readln(case arr[i] .condition 2.value attl) ;
• f F

write('Please enter a value _or ,con secattr_2, : );
readln(case arr[i].condition 2.value art2);

write('Please enter a value _or ',de_ firattr, ' : ');

readln(case_arr[i].decision.value attl);

wrlte('Please enter a value for '_dec secattr, ' : ');

readln (case_arr [i] .decision, value_att2) ;
i := i + I;

REPEAT

writeln;

write('Please enter [y] to input more data or [s] to stop :
readln(ch) ;

UNTIL ( (ch - 's') or (ch - 'S') or (oh -'y') or (ch - 'Y')

end;

n := i-l;

ch :_ , I .
f

end; { READ FUZZY }

');

);

v

w

**************************************************************************
************************* PROCEDURE ASK VALUE **************************

(**** ****)
{**** This procedure asks the user if they want to use the same ****)
{**** values as before for another run. ***-

procedure ask_value ( var ask_.val : char);
begin { ASK VALUE }

repeat
writeln;

writeln('Do you want to use the same values as previously used ');

write('Please enter [y] for yes; or [n] for no : ');
readln( ask val);

until ( (as_.val - 'y') or (ask_val - 'Y') or (ask_val - 'n') or

(ask_vaT - 'N') );
end; { ASK VALUE }



begin

if ( m ch = ' i') then

egYn
no of cases := 7;

example (condition,decislon, cases);

ask see(see ch) ;

if _ ( see _h- 'y') or (see ch- 'Y') ) then

print_dat (_ases,condition, de_ision,no of cases) ;
end

else if (m_ch - '2') then

begin

if ( count = 0) then

begin

read data := true;

coun[ :-count + i;

initialize (condition, decision) ;

read situation (condition, decision) ;

end

else

begin

ask sit (sit ch, count);

if _ (sit c_ - 'n') or (sit ch - 'N') ) then

begin

read data :_ true;

initialize(condition,decision) ;

read situation (condition, decision)
end

else

begin

ask value (val_ch) ;

if _ (val_ch - 'n') or (val_ch - 'N') ) then

read data :- true;

end;

end;

if read data then

begi_

ask data kind(d ch);

if _ (d c--h - 'r _') or (d ch - 'R') ) then

read_real (condition, decTsion, cases, no_of_cases)
else

read fuzzy (condition, decision, cases, no of cases) ;
ask see(see ch);

if _ ( see _h - 'y') or (see ch - 'Y') ) then

print_dat (_ases, condition, de_ision, no_of cases) ;
end;

end;

create condl fuzzy sets(cases,no of cases,condl attl arr, condl art2 art);

create--cond2--fuzzy_setm (cases, no of 'cames, cond2_att 1--arE, cond2--att2--arr) ;

create-decimTon_fuzzy_sets (cases, no_of_cases, dec_att__arr, dec__tt2_arr) ;

init (decl sub) ;

init (dec2--_eub) ;
init (dec1 inter) ;

init (dec2--inter) ;

set_cond (_ondition, dec l_sub) ;

set cond(condition,dec2 sub) ;

set cond(condition,decl inter) ;

set--cond (condition, dec2-inter) ;

set_dec1 (decision, decl_sub) ;

set decl(decision,decl inter);

set-dec2 (decision, dec2--sub) ;

set dec2(decision,dec2 inter);

val_e sub(no of cases,_ondl attl_arr,condl att2 arr, cond2 art1 art,
-- cond2 art2 ar_,dec attl arr,_ecl _ub); -- --

value_sub (no_o f_c as_s, c o_d l_at t l--at z',_ondl_at t_[_arr, cond2 _ att 1_art,
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cond2 art2 art,dec art2 art,dec2 sub);

value inter(no of cases,_ondl at_l ar_,condl a_t2 arr, cond2 attl art,

-- cond2 att2 arr,_ec attl arr, de_l in_er) ; -- -

value inter(no of cases,_ondl at_l ar_,condl a_t2 arr,cond2 attl art,

-- _ond2 att2 arr,_ec a_t2 arr, de_2 in[er); - -

print_rules (decl_suS, deck_sub, de_l_in_er, dec2jnter) ;

end;

until (m__ch - ' 3') ;
end. ( MAIN }
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